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Abstract

Computing the intersection curve of two quadrics is a fundamental problem in computer

graphics and solid modeling. We present an algebraic method for classifying and parameter-

izing the intersection curve of two quadric surfaces. The method is based on the observation

that the intersection curve of two quadrics is birationally related to a plane cubic curve. In the

method this plane cubic curve is computed first and the intersection curve of the two quadrics

is then found by transforming the cubic curve by a rational quadratic mapping. Topological

classification and parameterization of the intersection curve are achieved by invoking results

from algebraic geometry on plane cubic curves.

� 2003 Elsevier Science (USA). All rights reserved.

1. Introduction

Quadric surfaces, or surfaces of degree two, are the simplest curved surfaces and

they are widely used in computer graphics and solid modeling systems [6,8,27,

28,31,41,42]. In these applications it is often necessary to compute the intersection

of two or more quadric surfaces [10,12,14,18,22,40]. For brevity, following [19],
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the intersection curve of two quadrics will be referred to as a QSIC (quadric surface

intersection curve). The work reported here is about an algebraic method to compute
QSICs based on a birational mapping between QSICs and plane cubic curves.

1.1. Outline of the method

We propose an algebraic method for computing the QSIC, based on the result

that the intersection curve of two quadrics is birationally related to a plane cubic

curve [4,35]. A QSIC, which is a quartic space curve of the first species, is projected

into a plane cubic curve through a point X0 on the QSIC. This projection is a one-to-
one birational transformation P between a plane not passing through X0 and one of

the two quadric surfaces under consideration; it is, in fact, a generalized stereo-

graphic projection. With this projection the computation of a QSIC is facilitated

by a reduction of both its algebraic degree (from degree 4 to degree 3) and its dimen-

sion (from 3D to 2D).

Since our goal is to compute the QSIC of two given quadrics, the projection of the

QSIC, which is a plane cubic curve, must be found first. After the cubic curve is pro-

cessed, the QSIC is obtained by mapping it onto one of the two given quadric sur-
faces.

To devise an algorithm based on the above scheme, we are forced to address a

number of computational issues as well as study the ramifications of this scheme

in all cases. As a result, we have obtained an algorithm that is simple to implement

and capable of classifying a general QSIC and computing its parameterization.

As our method relies on a birational mapping between an algebraic plane curve

and the intersection curve of two algebraic surfaces, it is similar to the approaches

in [3,12,13], but with one important difference: in our method the QSIC is mapped
into a plane cubic curve, while a plane quartic curve is utilized in the other methods.

Hence, in this sense our method can be regarded as an improvement over those other

methods.

Some conventions on notation are in order. Scalar values and scalar functions are

denoted by lowercase and uppercase letters, respectively. Boldface uppercase and

lowercase letters denote 3D and 2D points or their coordinate vectors, respectively.

Matrices are also denoted by boldface uppercase letters. Lines, surfaces, sets and in-

tervals are denoted by calligraphic uppercase letters. For example, a quadric surface
is denoted by S : F ðXÞ � XAXT ¼ 0, where X is a 4D row vector of homogeneous

coordinates and A a 4� 4 symmetric matrix. The coefficients of all quadric surfaces

treated in this paper are real numbers, and the ground field of computation is the

field of real numbers unless specified otherwise.

The remainder of this paper is organized as follows. We first review previous work

in Section 1.2. In Section 2 we present some preliminaries; these include rational qua-

dratic parameterizations of quadrics and classifications of plane cubic curves and

QSICs. In Section 3 plane cubic curves birationally related to QSICs are derived.
The intersection algorithm is presented in Section 4, followed by discussions relating

how to compute a QSIC from its corresponding cubic curve and how to classify and

parameterize a QSIC. In Section 5 several examples are presented to illustrate major
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steps of the algorithm in a variety of cases. The paper concludes in Section 6 with a

summary of our results and a few open questions for future research.

1.2. Relevant prior work

A well-known algebraic method for computing QSICs is due to Levin [18,19]. Let

S0 : XAX
T ¼ 0 and S1 : XBX

T ¼ 0 be two distinct quadrics, where A and B are 4� 4

real symmetric matrices, and X is a row vector of homogeneous coordinates. Levin�s
method is based on the observation that there always exists a ruled quadric in the

pencil XðkAþ lBÞXT ¼ 0 spanned by S0 and S1. This ruled quadric, called a ‘‘pa-
rameterization surface,’’ is parameterized as

Sðu; vÞ ¼ ~RRðuÞ þ v~TTðuÞ;
where ~RRðuÞ is the base curve of the ruling and ~TTðuÞ is the direction vector of the

generating line passing through ~RRðuÞ. Substituting Sðu; uÞ into either S0 or S1, one

can solve for v in terms of u to obtain a parameterization of the QSIC of S0 and S1 in

the form,

QðuÞ ¼ RðuÞ 	
ffiffiffiffiffiffiffiffiffiffi
DðuÞ

p
TðuÞ: ð1Þ

Only those values of u for which DðuÞP 0 give rise to real points on the QSIC of S0

and S1. By identifying the intervals over which DðuÞP 0, a segmentation of the

QSIC can be derived.

Levin�s method is useful mainly for tracing and rendering a QSIC, rather than for
classification. In some cases the parameterization computed with this method may

not be appropriate. For instance, when a QSIC is singular or reducible, the method

still generates a parameterization involving a square root, though in this case a ra-

tional parameterization for the QSIC is available. Levin�s method was later refined

and implemented in GMSOLID by Sarraga [31] and also revised and extended in

[40].

By studying the eigenvalues and the generalized eigenspaces of the system AB
 kI
under the mild assumption that A2 ¼ I, Ocken et al. show [24] that two quadrics
XAXT ¼ 0 and XBXT ¼ 0 can be converted simultaneously by a projective transfor-

mation into two canonical forms whose intersection curve can be determined rather

easily. The merit of this approach is that a projective transformation is used to con-

vert the pair of input quadrics into forms that are simpler than what are obtained by

Levin�s method using an affine transformation. But the authors of [24] seem to be

unaware of the classical results by Bromwich [7] on classifying the QSIC in complex

projective space using the Segre characteristics and the standard technique for simul-

taneous block diagonalization of two real symmetric matrices [36]. As a conse-
quence, the link between the algebraic structure of the eigenspaces and the type of

singularity or reducibility of the intersection curve is not discussed fully in [24]. Fur-

thermore, the procedures presented there for classifying and computing the intersec-

tion curve are not thoroughly analyzed; for instance, the case of two quadrics

intersecting in a line and a space cubic curve is not accounted for, and a QSIC having

two singular points is listed in one of the generic cases and parameterized using a
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square-root function, although such a curve is reducible and thus comprises a collec-

tion of rational curves.
Farouki et al. [12] present another algebraic method that uses rational arithmetic

to compute degenerate QSICs. Although degenerate QSICs occupy only a lower-di-

mension manifold in the configuration space of all QSICs, they occur frequently in

practice and allow rational parameterizations. The Segre characteristic is used in [12]

to classify a degenerate QSIC topologically and detect its degeneracy and reducibil-

ity. Given two quadrics S0 : XAX
T ¼ 0 and S1 : XBX

T ¼ 0, the Segre characteristic is

defined by the invariant factors of the quadratic form kAþ lB, [7,35, pp. 267–273].
The degeneracy of the QSIC is detected by testing whether or not the discriminant of
the characteristic equation detðkAþ lBÞ ¼ 0 is zero. When the QSIC is found to be

degenerate, a quartic projection cone is derived for the QSIC. The reducibility of the

QSIC is then determined by factoring the quartic projection cone.

The method in [3] uses a projection between points of a plane curve and points of

a space curve defined by the transversal intersection of two algebraic surfaces. The

mapping is a parallel projection, with the projection direction chosen in a random-

ized manner to avoid a possible degenerate many-to-one correspondence. When ap-

plied to intersecting two quadrics, this method leads to a plane quartic curve. Note
that the projections used in both [12] and [3] have the center of projection not on the

QSIC.

The representation of the intersection curve of two algebraic surfaces by an alge-

braic plane curve plus a birational mapping has also been studied in [13]. A family of

projections from the points on a line are used to uniquely determine the intersection

curve. A parameterization and topological classification of the intersection curve can

be achieved by parameterizing and classifying the corresponding plane algebraic

curve. This method also needs to analyse a plane quartic curve when the two surfaces
are quadrics.

Wilf and Manor [40] extend Levin�s method to classify a general QSIC as well as

produce its geometric description. To classify a QSIC, the roots of the characteristic

equation are solved for numerically, and then the Segre characteristic is found and

used to guide the parameterization of the QSIC utilizing Levin�s method. Thus their

method is a hybrid approach: Levin�s method is used for parameterization and the

Segre characteristic is used for classification. This method does not compute the

number of connected components of a nonsingular QSIC in real projective space,
since this information is not provided by the Segre characteristic.

A geometric approach to computing the QSIC is taken in [15,16,21,23,34]. In

these methods quadrics of different types are represented in different forms, and dif-

ferent routines are invoked for intersecting different combinations of quadrics. The

main advantage of the geometric approach is that geometric insights can help deter-

mine the configuration of the intersection curve, and a customized routine can be de-

vised to compute the intersection curve with high accuracy in each particular case. In

general, geometric methods are more robust numerically than algebraic methods.
But, at present, the geometric approach works well only for natural quad-

rics—planes, spheres, circular cones, and right circular cylinders — which are a spe-

cial class of quadrics that are frequently used in mechanical CAD.
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2. Preliminaries

In this section we shall review some results that will be used later in the paper. In

particular, we shall discuss rational quadratic parameterizations of a quadric sur-

face, base points, classification of cubic plane curves and QSlCs.

2.1. Quadratic parameterizations

Let S be a quadric surface represented by XAXT ¼ 0. S is nondegenerate if

rankðAÞ ¼ 4, and is properly degenerate if rankðAÞ ¼ 3. Properly degenerate quad-
rics have one singular point in PR3, the 3D real projective space, and they consist of

all the quadric cones and quadric cylinders in E3, the 3D real Euclidean space. When

rankðAÞ ¼ 2 or 1, S consists of two distinct planes or a double plane. S is irreducible

if the quadratic form XAXT is irreducible, i.e., XAXT cannot be factored over the

complex field. A quadric is irreducible if and only if it is nondegenerate or properly

degenerate.

Any irreducible quadric can be parameterized as a faithful rational quadratic sur-

face [32]. A rational parameterization is faithful if there is a one-to-one correspon-
dence between points on the surface and points in the parameter domain, except

possibly on a finite number of curves on the surface.

The following procedure for deriving a rational quadratic parameterization of an

irreducible quadric is standard [1]. Choose a finite regular point X0 ¼ ðx0; y0; z0;w0Þ
on S. Let NXT ¼ 0 be the plane at infinity, where N ¼ ð0; 0; 0; 1Þ. Let ðr; s; tÞ ¼
ðx; y; zÞ be a homogeneous coordinate system for the plane at infinity, where

ðx; y; z; 0Þ are the coordinates of the points on NXT ¼ 0. Then T ¼ ðr; s; t; 0Þ is a ge-

neric point on NXT ¼ 0. Represent the line passing through X0 and T as XTðu; vÞ ¼
uX0 þ vT. Then XTðu; vÞ intersects the quadric S in two points, one of which is X0.

Substituting XTðu; vÞ into XAXT ¼ 0 and solving the resulting equation in ðu; vÞ,
we obtain ðu; vÞ ¼ ð1; 0Þ, which stands for the intersection at X0, and ðu; vÞ ¼
ðTATT;
2X0AT

TÞ, which represents the other intersection, given by

Pðr; s; tÞ ¼ ðTATTÞX0 
 2ðX0AT
TÞT: ð2Þ

This equation provides a rational quadratic parameterization of S. Since Pðr; s; tÞ is
obtained by a projection through X0, the point X0 is called the center of projection

(COP) of Pðr; s; tÞ.
For a point X on S, the inversion formula to Pðr; s; tÞ in (2) is

T ¼ w0X
 w0X0: ð3Þ
This formula is a rational linear mapping from S to the plane at infinity. Thus

Pðr; s; tÞ is a birational mapping between points in the parameter domain and points

on the quadric surface S.

2.2. Base points

A base point of a rational surface Pðr; s; tÞ is a parameter point ðr0; s0; t0Þ 6¼ 0

such that Pðr0; s0; t0Þ ¼ 0. If Pðr; s; tÞ ¼ ðxðr; s; tÞ; yðr; s; tÞ; zðr; s; tÞ;wðr; s; tÞÞ is a
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faithful rational quadratic parameterization of an irreducible quadric S :
XAXT ¼ 0, then Pðr; s; tÞ must have two base points [32]. The two base points
can be distinct real points (for hyperbolic paraboloids and their projective equiv-

alents), a double real point (for quadric cones and cylinders), or complex conju-

gate points (for ellipsoids and their projective equivalents). The base line of

Pðr; s; tÞ is the line determined by the two base points of Pðr; s; tÞ. In the case

of a double base point, the base line is the unique tangent shared by the four con-

ics xðr; s; tÞ ¼ 0, yðr; s; tÞ ¼ 0, zðr; s; tÞ ¼ 0, and wðr; s; tÞ ¼ 0 at the double base

point [39].

Suppose the parameter plane is chosen to be the plane at infinity as in Section
2.1 and the COP of Pðr; s; tÞ is X0. Then the base line equation of Pðr; s; tÞ is

X0AT
T ¼ 0, where T ¼ ðr; s; t; 0Þ; that is, the base line is the intersection between

the plane at infinity and the tangent plane of XAXT ¼ 0 at X0. Moreover, the

base points are the two intersection points of the base line X0AT
T ¼ 0 and the

conic TATT ¼ 0. Treating the base points as points T0
0, and T0

1 in 3D on the plane

at infinity, the generating lines of S passing through X0 are X0 þ vT0
0 and

X0 þ vT0
1.

Theorem 1. Let Pðr; s; tÞ be a faithful rational quadratic parameterization of a quadric
S. An algebraic plane curve Kðr; s; tÞ ¼ 0 of degree k is mapped by Pðr; s; tÞ into a space
curve on S of degree 2k 
 p iff Kðr; s; tÞ ¼ 0 passes p times through the base points of
Pðr; s; tÞ.

Proof. Let C be the image on S of Kðr; s; tÞ ¼ 0 under Pðr; s; tÞ. Then the degree of C is

the number of intersections between C and a generic plane BXT ¼ 0. Clearly, the

intersections of C and BXT ¼ 0 are in one-to-one correspondence with those inter-
sections in the parameter plane between Kðr; s; tÞ ¼ 0 and the conic BPTðr; s; tÞ ¼ 0

that are not at the base points of Pðr; s; tÞ, since a base point is not mapped by

Pðr; s; tÞ into any well-defined point.

By Bezout�s theorem, there are 2k intersections between Kðr; s; tÞ ¼ 0 and the conic

BPTðr; s; tÞ ¼ 0. Moreover Kðr; s; tÞ ¼ 0 passes through the base points p times if and

only if exactly p of these 2k intersections are at the base points for all B 6¼ 0, or equiv-

alently, the number of intersections between Kðr; s; tÞ ¼ 0 and BPðr; s; tÞT ¼ 0 that are

not at the base points is 2k 
 p. �

By Theorem 1, a line in the ðr; s; tÞ plane is, in general, mapped by Pðr; s; tÞ
into a conic on S. But if the line passes through exactly one base point, it

will be mapped by Pðr; s; tÞ into a straight line on S. The base line, which

passes through two base points, is mapped into a point on S, which is, in

fact, the COP of Pðr; s; tÞ. Similarly, a proper conic in the ðr; s; tÞ plane could

be mapped into a quartic curve, a cubic curve, or a conic on S, depending

on how many times it passes through the base points of Pðr; s; tÞ. This anal-
ysis will help us compute the irreducible components of a QSIC by map-

ping the corresponding components of the associated plane cubic curve by

Pðr; s; tÞ.
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2.3. Classification of plane cubic curves

Plane cubic curves have been well studied in algebraic geometry [33,38] and in

CAGD [26], As our algorithm is based on the analysis of plane cubic curves, we

briefly review the classification of plane cubic curves. We shall assume that the coef-

ficients of a cubic curve are real numbers. Note that there are always real points on

such a plane cubic curve.

A reducible plane cubic curve consists of either three lines or a line and a conic. In

the former case, two of the three lines might form a conjugate pair. In the latter case,

the conic might be imaginary, i.e., have no real points. There exist simple techniques
to compute rational parameterizations for the real linear and conic components of a

reducible cubic curve [1].

An irreducible plane cubic curve can be transformed projectively into the follow-

ing form in homogeneous coordinates ðr; s; tÞ [5],
ts2 ¼ ar3 þ br2t þ crt2 þ dt3: ð4Þ

Five main species of cubic curves can be distinguished according to the zeroes of the

cubic polynomial on the right-hand side: (a) a singular cubic curve with a crunode;

(b) a singular cubic curve with a cusp; (c) a singular cubic curve with an acnode; (d) a

nonsingular cubic curve with two connected components in PR2; (e) a nonsingu-

lar cubic curve with one component in PR2. These five cases are illustrated in
Fig. 1(a)–(e).

An irreducible plane cubic curve can be singular or nonsingular. A singular cu-

bic curve has exactly one double point, which can be either a cusp, a crunode, or

an acnode. A singular cubic curve has a rational cubic parameterization, which

can be obtained from a pencil of lines centered at the double point. A nonsingu-

lar plane cubic can have one or two connected real components in PR2. Of par-

ticular interest to us are the nonsingular cubic curves with two connected

components in PR2. One of these components is called the infinite component,
the other the oval. The infinite component is characterized by the fact that it is

intersected by every line in PR2; an intersection point may be at infinity in an

affine realization of PR2. A nonsingular plane cubic curve does not have a ra-

tional parameterization, though it can be parameterized with square roots [2]

or elliptic functions [25]. The reader is referred to [29] for more information about

the classification of plane cubic curves and to [26] for a discussion of singular

cubic curves.

2.4. Classification of QSICs

There are many configurations of QSICs resulting from the intersection of

different quadrics with different relative positions and orientations. In general,

a QSIC is a space quartic curve of the first species; an arbitrary plane not con-

taining any component of the QSIC intersects it in exactly four points with

multiplicities, complex intersections, and intersections at infinity counted

properly.
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The composition of a reducible QSIC can be in one of the following configura-

tions [4,12]: (1) four lines: the four lines are either four real lines, or two real lines

plus a pair of complex conjugate lines, or two pairs of complex conjugate lines.

No more than two of these four lines can be mutually skew; that is, the four lines

must form two degenerate conics; (2) two lines and one conic: the two lines are either

two real lines or a pair of complex conjugate lines, and the conic can be real or imag-

inary; (3) one line and one cubic space curve: the line and the cubic space curve must
both be real, and the line must either be tangential to the cubic or intersect the cubic

in two distinct points; (4) two conics: either of the two conics can be real or imagi-

nary.

An irreducible QSIC can be singular. A singular QSIC has exactly one singular

point, and has a rational quartic parameterization. This singular point can be a node

or a cusp on the QSIC; it can also be an isolated real point, similar to an acnode on a

singular plane cubic curve. A nonsingular QSIC has no singular point and does not

admit a rational parameterization, but it has a parameterization with square roots.
We will prove later that a nonsingular QSIC in PR3 has exactly one or two con-

nected components, as commonly believed. These properties of QSICs are reminis-

cent of those of plane cubic curves.

Fig. 1. Five species of irreducible plane cubic curves.
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3. Computing the projection of a QSIC

Given two quadrics, we shall discuss in this section: (1) how to derive the cubic

plane curve corresponding to the intersection of the two quadrics; and (2) how to

process this cubic curve. This discussion is necessary before we can present the inter-

section algorithm in Section 4.

3.1. Deriving the plane cubic curve

Let F ðXÞ ¼ 0 and GðXÞ ¼ 0 be two distinct quadrics. Assume that at least one of
F ðXÞ ¼ 0 or GðXÞ ¼ 0 is irreducible; otherwise the problem of computing the QSIC

can be reduced to finding intersections between two pairs of planes. Without loss of

generality we assume that F ðXÞ ¼ 0 is irreducible, by swapping F ðXÞ ¼ 0 and

GðXÞ ¼ 0 if necessary. Let X0 be a regular point on F ðXÞ ¼ 0, and let Pðr; s; tÞ be

a faithful rational quadratic parameterization of F ðXÞ ¼ 0 with its COP at X0. Let

the QSIC refer to the intersection curve of F ðXÞ ¼ 0 and GðXÞ ¼ 0. Then the QSIC

corresponds to the quartic curve

�GGðr; s; tÞ � GðPðr; s; tÞÞ ¼ 0 ð5Þ

in the ðr; s; tÞ plane. In general, there is a one-to-one correspondence between points

on the QSIC and points on �GGðr; s; tÞ ¼ 0. The exceptional case is when either of the

two generating lines of F ðXÞ ¼ 0 passing through X0 is part of the QSIC, since all

points on such a line correspond to a base point under Pðr; s; tÞ. The QSIC is mapped

by the inverse of Pðr; s; tÞ into the components of the quartic curve �GGðr; s; tÞ ¼ 0. We
shall now examine conditions under which the quartic curve �GGðr; s; tÞ ¼ 0 can be

simplified.

Theorem 2. Let Lðr; s; tÞ ¼ 0 be a linear equation of the base line of Pðr; s; tÞ. Then
Lðr; s; tÞ is a k-fold factor of �GGðr; s; tÞ if and only if X0 is a k-fold point of the QSIC.

Proof. The following is proved in [39]. Given any faithful parameterization Pðr; s; tÞ
of an irreducible quadric S, there is a plane P not passing through X0 such that
Pðr; s; tÞ is a perspective projection from P onto S, and the COP of this projection is

on S. This perspective projection and the parameter plane associated with Pðr; s; tÞ
are used in the following argument.

Let X0 be a k-fold point of the QSIC, 06 k6 4, and let Lðr; s; tÞ be an ‘-fold factor

of �GGðr; s; tÞ. Then �GGðr; s; tÞ ¼ L‘ðr; s; tÞKðr; s; tÞ, where Kðr; s; tÞ is a polynomial of de-

gree 4
 ‘.
Let L be a generic line in the parameter plane. Then the plane determined by L

and X0 intersects the QSIC at 4
 k points other than X0. These 4
 k intersections
are in a one-to-one correspondence with the intersections of L and �GGðr; s; tÞ ¼ 0 that

are not on the base line Lðr; s; tÞ ¼ 0, i.e., the intersections between L and

Kðr; s; tÞ ¼ 0. Since the number of intersections of a generic line with an algebraic

plane curve is equal to the degree of the curve, we have 4
 k ¼ 4
 ‘; that is,

k ¼ ‘. �
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Theorem 2 implies that if the parameterization Pðr; s; tÞ of F ðXÞ ¼ 0 is chosen ap-

propriately, i.e., with its COP being a regular point of the QSIC, the quartic curve
�GGðr; s; tÞ ¼ 0 always contains the base line as a linear component. The points on

the remaining cubic component Kðr; s; tÞ ¼ 0 are essentially in a one-to-one corre-

spondence with all the points of the QSIC, since the base line is always mapped into

the COP of Pðr; s; tÞ. As the base line equation Lðr; s; tÞ ¼ 0 is easy to obtain (see Sec-

tion 2), the remaining component Kðr; s; tÞ ¼ 0 can be computed by polynomial

division.

Let F0ðXÞ ¼ ðoF =ox; oF =oy; oF =oz; oF =owÞ and G0ðXÞ ¼ ðoG=ox; oG=oy; oG=oz;
oG=owÞ. The point X0 is a regular point of the QSIC if and only if F ðX0Þ ¼
GðX0Þ ¼ 0 and F 0ðX0Þ and G0ðX0Þ are not collinear. These constraints constitute

easy-to-test conditions for determining whether or not X0 is a regular point of the

QSIC.

When the COP X0 is a singular point of the QSIC, by Theorem 2, Lðr; s; tÞ is a

multiple factor of �GGðr; s; tÞ and the remaining factor Kðr; s; tÞ is at most quadratic.

In this case, all irreducible components of Kðr; s; tÞ ¼ 0 are mapped to irreducible

components of the QSIC.

The point X0 chosen to be the COP may happen to be a singular point or may be a
singular point by design. For instance, if the QSIC contains a singular point, then

this singular point could be found by some method based on Levin�s algorithm

and could be used as a COP in our algorithm. Since a singular COP is a special case,

we require only that an arbitrary point on the QSIC be used as a COP, without re-

quiring it to be at the singular point even when the QSIC is singular. When a regular

point of a QSIC is used as the COP, detecting the singularity of the QSIC is reduced

to detecting the singularity of a plane cubic curve. Hence our treatment is simpler

than computing the singularity of a QSIC directly by Levin�s method. In the follow-
ing we will mainly discuss the case where the COP of Pðr; s; tÞ is a regular point on

the QSIC.

Let the COP of Pðr; s; tÞ be a regular point on the QSIC. By Theorem 2,
�GGðr; s; tÞ ¼ Lðr; s; tÞKðr; s; tÞ; where Kðr; s; tÞ is a cubic factor of �GGðr; s; tÞ not contain-
ing Lðr; s; tÞ.

Theorem 3. The cubic curve Kðr; s; tÞ ¼ 0 passes at least once through each of the two
base points of Pðr; s; tÞ. When Pðr; s; tÞ has a double base point, Kðr; s; tÞ ¼ 0 passes
through the base point at least twice.

Proof. There are two cases to consider: (a) Pðr; s; tÞ has two distinct base points; (b)

Pðr; s; tÞ has a double base point.

Case (a): Let b0 be a base point of Pðr; s; tÞ. Since all four component functions of

Pðr; s; tÞ vanish at b0 and GðXÞ is quadratic, �GGðr; s; tÞ � GðPðr; s; tÞÞ ¼ 0 is singular at

b0. Since Lðr; s; tÞ ¼ 0 is regular at b0 and �GGðr; s; tÞ ¼ Lðr; s; tÞKðr; s; tÞ, Kðr; s; tÞ must

vanish at b0, for otherwise �GGðr; s; tÞ ¼ 0 would not be singular at b0. Hence
Kðr; s; tÞ ¼ 0 passes through b0.

Case (b): If Kðr; s; tÞ ¼ 0 is mapped by Pðr; s; tÞ into a quartic QSIC on F ðXÞ ¼ 0,

then, by Theorem 1, Kðr; s; tÞ ¼ 0 must pass through the double base point twice. If
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Kðr; s; tÞ ¼ 0 is mapped into a lower-degree component of the QSIC, then, by The-

orem 1, it must pass through the base point more than twice. �

3.2. Processing the cubic curve

Again suppose that the COP of Pðr; s; tÞ is a regular point on the QSIC. By The-

orem 2, the base line component Lðr; s; tÞ ¼ 0 can be removed from �GGðr; s; tÞ ¼ 0, and

the remaining cubic component Kðr; s; tÞ ¼ 0 does not contain Lðr; s; tÞ ¼ 0. Now

consider detecting the reducibility and singularity of the cubic Kðr; s; tÞ ¼ 0 in order

to detect the reducibility and singularity of the QSIC. Note that if Kðr; s; tÞ ¼ 0 is re-
ducible, the QSIC is also reducible. It is also useful to detect the singularity of an

irreducible QSIC, since in this case the QSIC possesses a rational quartic parameter-

ization [12].

In our algorithm the reducibility of the cubic curve Kðr; s; tÞ ¼ 0 is detected first. If

it is irreducible, we further detect its singularity as follows. By definition, a singular

point of Kðr; s; tÞ ¼ 0 is a common intersection of the three conics oKðr; s; tÞ=or ¼ 0,

oKðr; s; tÞ=os ¼ 0, and oKðr; s; tÞ=ot ¼ 0. Denote these three conics by C0 : rH0r
T ¼ 0,

C1 : rH1r
T ¼ 0, and C2 : rH2r

T ¼ 0, where r ¼ ðr; s; tÞ and the Hi; i ¼ 0; 1; 2; are real
3� 3 symmetric matrices. Because Kðr; s; tÞ ¼ 0 is irreducible, the Ci; i ¼ 0; 1; 2; can-
not be the same. Without loss of generality, assume that C1 and C2 are distinct conics.

By solving for a real root k1 of the cubic equation jkH1 þH2j ¼ 0, we obtain a reduc-

ible conic rðk1H1 þH2ÞrT ¼ 0, whose two constituent lines are denoted by L1 and L2.

Then the four intersection points of C1 and C2 are the intersections of L1 and L2 with

C1 (or C2). Among the four intersections, only those lying on C0 : rH0r
T ¼ 0 are sin-

gular points of Kðr; s; tÞ ¼ 0. Since a singular point of an irreducible Kðr; s; tÞ ¼ 0

must be real, only real intersections need to be considered. We may also assume that
L1 and L2 are real lines; when they are complex conjugate, we just test whether or not

their common real point is a singular point of the cubic Kðr; s; tÞ ¼ 0. Note that at

most one singular point is expected, since Kðr; s; tÞ ¼ 0 is irreducible.

Another method which assumes only rational arithmetic for computing the singu-

larity of general algebraic plane curves is proposed in [30]. Yet another possible

method is to use resultants to determine if C0, C1, and C2 have a common intersection.

Since we consider only a floating point implementation of our algorithm, the method

described above suffices.
When Kðr; s; tÞ ¼ 0 is irreducible and singular, the type of its double point r0 is

determined by the Hessian H(r) of Kðr; s; tÞ ¼ 0 at r0 where

HðrÞ ¼

oKðrÞ
o2r

oKðrÞ
oros

oKðrÞ
orot

oKðrÞ
osor

oKðrÞ
o2s

oKðrÞ
osot

oKðrÞ
otor

oKðrÞ
otos

oKðrÞ
o2t

2
6664

3
7775

with r ¼ ðr; s; tÞ. Since Kðr; s; tÞ ¼ 0 is an irreducible cubic that is singular at r0, the

conic C0 : rHðr0ÞrT ¼ 0 is a reducible conic. The point r0 is a cusp, an acnode, or a

crunode of Kðr; s; tÞ ¼ 0 if the conic rHðr0ÞrT ¼ 0 consists of a double real line, a pair
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of conjugate lines, or a pair of distinct lines, respectively. We will, however, use a

simpler expression in the next section to classify the type of a singular point of
Kðr; s; tÞ ¼ 0.

4. Computing the QSIC

In this section we shall first give an outline of our method, followed by detailed

discussions on three main issues: (1) parameterization; (2) classification; and (3) de-

tection of lines contained in the QSIC.

4.1. Outline of the algorithm

Let F ðXÞ ¼ 0 and GðXÞ ¼ 0 be two distinct quadrics. Assume that F ðXÞ ¼ 0 is ir-

reducible. Our algorithm consists of the following steps.

1. Compute a real point X0 of the intersection of F ðXÞ ¼ 0 and GðXÞ ¼ 0 such that

X0 is a regular point on F ðXÞ ¼ 0. If such a point does not exist, the QSIC is either

empty or consists of only the singular point of F ðXÞ ¼ 0; so quit.
2. Use X0 as the COP to derive a faithful rational quadratic parameterization

Pðr; s; tÞ of F ðXÞ ¼ 0. Substitute Pðr; s; tÞ into GðXÞ ¼ 0 to get a quartic plane

curve �GGðr; s; tÞ � GðPðr; s; tÞÞ ¼ 0. Remove a linear component—the base line of

Pðr; s; tÞ—from �GGðr; s; tÞ ¼ 0 to get the remaining component, denoted by

Kðr; s; tÞ ¼ 0, such that Kðr; s; tÞ ¼ 0 does not contain the base line.

3. Factor Kðr; s; tÞ ¼ 0 into irreducible components. When Kðr; s; tÞ ¼ 0 is irreduc-

ible and Kðr; s; tÞ is cubic, use the method in Section 3.2 to detect whether or

not Kðr; s; tÞ ¼ 0 is singular.
4. Parameterize each irreducible component of Kðr; s; tÞ ¼ 0. Map the parametric

equations of these components by Pðr; s; tÞ into parameterizations of the corre-

sponding components of the QSIC. Eliminate a common factor of the resulting

parameterized QSIC components if their corresponding components in

Kðr; s; tÞ ¼ 0 pass through the base points of Pðr; s; tÞ.
5. Determine if any of the two generating lines of F ðXÞ ¼ 0 passing through X0 is

contained in the QSIC.

Step 1 requires us to find a point on the QSIC. This point is computed in our al-
gorithm using Levin�s method, which has proven to be numerically robust [31]. Spe-

cifically, we first use Levin�s method to find a parameterization of the QSIC in the

form Qðu; vÞ ¼ Sðu; vÞ 	 Tðu; vÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðu; vÞ

p
. Then, by solving the quartic equation

Dðu; vÞ ¼ 0, we determine an interval of the homogeneous parameter ðu; vÞ over

which Dðu; vÞP 0; an arbitrary parameter ðu0; v0Þ in this interval is used to yield a

real point Qðu0; v0Þ on the QSIC. If Dðu; vÞ ¼ 0 has no real roots and Dðu; vÞ > 0

for all parameters ðu; vÞ, then any parameter ðu; vÞ can be used to yield a real point

Qðu0; v0Þ. But if Dðu; vÞ ¼ 0 has no real roots and Dðu; vÞ < 0 for all parameters
ðu; vÞ, then in this case the input quadrics F ðXÞ ¼ 0 and GðXÞ ¼ 0 have no real inter-

section points [18]. As pointed out in [18, p. 558], [19, p. 76], another case in which

the two quadrics can be detected to have no real intersection points is when an
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invalid surface (i.e., an imaginary quadric given by a definite matrix) is found during

the search for a parameterization surface (i.e., a ruled quadric) in the pencil of
F ðXÞ ¼ 0 and GðXÞ ¼ 0. Hence, by testing if either of these two cases occurs, Levin�s
method also reports correctly when the two quadrics do not have any real inter-

section point. The following fact, implied but not proved in [18], is useful in under-

standing the condition for detecting the lack of real intersection points between two

real quadrics: two real quadrics have no real intersection points if and only if the

pencil of their coefficient matrices contains a definite matrix. See [9] for a proof of

this result.

Our algorithm works correctly even when all the points of the QSIC are singular
points of the QSIC, since it just requires that the COP of F ðXÞ ¼ 0 be a regular point

of the quadric surface F ðXÞ ¼ 0; the COP does not have to be a regular point of the

QSIC. The simple example below demonstrates this condition as well as the main

steps of the algorithm. Several other more general examples will be presented in Sec-

tion 5.

Consider two quadrics F ðXÞ ¼ XAXT � x2 þ y2 þ z2 
 w2 ¼ 0 and GðXÞ ¼
XBXT ¼ 4x2 þ 4y4 þ z2 
 w2 ¼ 0. Clearly, GðXÞ ¼ 0 is an ellipsoid contained in the

sphere F ðXÞ ¼ 0, and there are two real touching points between the two surfaces.
Therefore there are only two real points V0 ¼ ð0; 0; 1; 1Þ and V1 ¼ ð0; 0;
1; 1Þ on

the QSIC of F ðXÞ ¼ 0 and GðXÞ ¼ 0, and these two points are singular points of

the QSIC. Now let us see how these two points are computed by our algorithm.

In step one, Levin�s method is used to find the point V0 on the QSIC, and it can

be verified that V0 is a double point of the QSIC but a regular point of the quadric

F ðXÞ ¼ 0. In step two, using V0 as the COP of F ðXÞ ¼ 0, we find a parameterization

Pðr; s; tÞ of F ðXÞ ¼ 0:

Pðr; s; tÞ ¼ ð
2rt;
2st; r2 þ s2 
 t2; r2 þ s2 þ t2Þ:

Substituting Pðr; s; tÞ in GðXÞ ¼ 0, we obtain the plane quartic curve
�GGðr; s; tÞ � 12ðr2 þ s2Þt2 ¼ 0. Since V0, the COP of F ðXÞ ¼ 0, is a double singular
point of the QSIC, by Theorem 2, we may remove the base line factor

V0Aðr; s; t; 0ÞT ¼ t twice from �GGðr; s; tÞ ¼ 0 to get the conic curve Kðr; s; tÞ ¼
12ðr2 þ s2Þ ¼ 0. In step three, the curve Kðr; s; tÞ ¼ 0 can be factored into two con-

jugate complex lines r þ is ¼ 0 and r 
 is ¼ 0, which intersect at the real point

ð0; 0; 1Þ; these two lines can be mapped by Pðr; s; tÞ onto the quadric F ðXÞ ¼ 0 to get

the two degree-two components of the QSIC, and the only real point ð0; 0; 1Þ on

Kðr; s; tÞ ¼ 0 is mapped by Pðr; s; tÞ into the real intersection point V1 ¼ ð0; 0;
1; 1Þ
of the QSIC. Hence we have obtained all the real intersection points between
F ðXÞ ¼ 0 and GðXÞ ¼ 0.

The computation in step 2 of Pðr; s; tÞ and its base points and base line has been

described in Section 2. It is straightforward to compute �GGðr; s; tÞ and remove the base

line factor. It is also straightforward to factor Kðr; s; tÞ as a cubic bivariate polyno-

mial. The basic idea is to determine a linear polynomial Cðr; s; tÞ and a quadratic

polynomial Dðr; s; tÞ such that Cðr; s; tÞDðr; s; tÞ ¼ Kðr; s; tÞ. In the remainder of this

section we shall discuss steps 4 and 5, and the identification of connected compo-

nents of a nonsingular QSIC.
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4.2. Parameterizing the QSIC

We suppose in the following that Kðr; s; tÞ ¼ 0 is a plane cubic curve, i.e., the COP

of Pðr; s; tÞ is a regular point of the QSIC; for otherwise Kðr; s; tÞ ¼ 0 is a conic or a

line, which can easily be classified and parameterized as a rational curve.

Parameterization is done by first computing a parameterization of the cubic curve

Kðr; s; tÞ ¼ 0, and then mapping it by Pðr; s; tÞ into a parameterization of the QSIC.

Since, by Theorem 3, Kðr; s; tÞ ¼ 0 passes through the base points of Pðr; s; tÞ, all co-
ordinate components of this parameterization of the QSIC share a common factor.

Such a parameterization is problematic when used to compute points on the QSIC.
We shall only discuss parameterization in two cases: (1) Kðr; s; tÞ ¼ 0 is singular and

irreducible; and (2) Kðr; s; tÞ ¼ 0 is nonsingular. We skip the case where Kðr; s; tÞ ¼ 0

is reducible, since in this case all its conic or linear components can readily be param-

eterized with rational functions, and the procedure for elimination of a common fac-

tor is similar to the previous cases.

4.2.1. Parameterization of a singular QSIC

Suppose Kðr; s; tÞ ¼ 0 is a singular but irreducible plane cubic curve with the dou-
ble point r0 ¼ ðr0; s0; t0Þ. Without loss of generality, we may assume t0 6¼ 0, so we

may set u ¼ ðu; v; 0Þ below; if t0 ¼ 0, the three components of r0 ¼ ðr0; s0; t0Þ may

be permuted into r00 ¼ ðr00; s00; t00Þ with t00 6¼ 0, and the same procedure can be followed.

The pencil of lines centered at r0 is

wðu; l; kÞ ¼ lr0 þ ku: ð6Þ
Substituting wðu;l; kÞ into Kðr; s; tÞ ¼ 0 and using Taylor�s expansion for multi-
variate polynomials, we have

Kðlr0 þ kuÞ ¼ l3Kðr0Þ þ l2k
oK
or

u
	

þ oK
os

v


þ 1

2!
lk2

X2

i¼0

2!

i!ð2
 iÞ!

� o2K
o2
irois

u2
ivi þ 1

3!
k3

X3

i¼0

3!

i!ð3
 iÞ!
o3K

o3
irois
u3
ivi ¼ 0;

where all the derivatives of Kðr; s; tÞ are evaluated at r0. Since r0 is a singular point of

Kðr; s; tÞ ¼ 0, Kðr0Þ ¼ oK=or ¼ oK=os ¼ 0. Dropping the trivial factor k2 ¼ 0, we
obtain

lBðu; vÞ þ kCðu; vÞ ¼ 0;

where

Bðu; vÞ ¼ 3
X2

i¼0

2!

i!ð2
 iÞ!
o2K

o2
irois
u2
ivi;

Cðu; vÞ ¼
X3

i¼0

3!

i!ð3
 iÞ!
o3K

o3
irois
u3
ivi:
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Substituting l ¼ Cðu; vÞ and k ¼ 
Bðu; vÞ in wðu; l; kÞ, we obtain a rational cubic

parameterization of Kðr; s; tÞ ¼ 0,

rðu; vÞ ¼ Cðu; vÞr0 
 Bðu; vÞðu; v; 0Þ:

Suppose the parameterization Pðr; s; tÞ of F ðXÞ ¼ 0 is expressed in the quadratic

form

Pðr; s; tÞ ¼ ðr; s; tÞMðr; s; tÞT;

where M ¼ ½M0;M1;M2;M3� denotes four 3� 3 symmetric matrices Mi,

i ¼ 0; 1; 2; 3, and the above equation is a short-hand notation for

Pðr; s; tÞ ¼ ½ðr; s; tÞM0ðr; s; tÞT; ðr; s; tÞM1ðr; s; tÞT;

ðr; s; tÞM2ðr; s; tÞT ; ðr; s; tÞM3ðr; s; tÞT�:

Mapping rðu; uÞ by Pðr; s; tÞ onto F ðXÞ ¼ 0, we obtain a rational parameterization of

the QSIC

~QQðu; vÞ ¼ Pðrðu; vÞÞ ¼ rðu; vÞMrTðu; vÞ;

which is a rational parameterization of degree 6. By Theorem 3, rðu; vÞ passes at least
once through each of the two base points of Pðr; s; tÞ. Let ðu0; v0Þ and ðu1; v1Þ be the
values of ðu; vÞ such that rðu0; v0Þ and rðu1; v1Þ are the two base points of Pðr; s; tÞ.
Then ~QQðu0; v0Þ ¼ ~QQðu1; v1Þ ¼ 0. So the factor ðv0u
 u0vÞðv1u
 u1vÞ can be removed

from all four components of ~QQðu; vÞ. Thus the QSIC has the rational quartic pa-

rameterization

Qðu; vÞ ¼ rðu; vÞMrTðu; vÞ
ðv0u
 u0vÞðv1u
 u1vÞ

:

The factors ðv0u
 u0vÞðv1u
 u1vÞ can be found as follows. Let l0ðr; s; tÞT ¼ 0 be the

base line equation of Pðr; s; tÞ, where l0 is a coefficient vector. Then ðv0u
 u0vÞ
ðv1u
 u1vÞ is a factor of the cubic polynomial l0r

Tðu; vÞ. If l0rTðu; vÞ has three real

zeros, ðv0u
 u0vÞðv1u
 u1vÞ is determined by the two zeros that give the two base
points. If l0r

Tðu; vÞ has only one real zero, ðv0u
 u0vÞðv1u
 u1vÞ is the remaining

quadratic factor of l0r
Tðu; vÞ ¼ 0, and in this case the two base points are complex

conjugates.

If Kðr; s; tÞ ¼ 0 passes through the base points more than twice, then it intersects

the base line exactly three times at the base points, so all the zeros of l0r
Tðu; vÞ ¼ 0

correspond to base points. Hence the cubic factor l0r
Tðu; vÞ needs to be removed

from ~QQðu; vÞ. The QSIC then has the rational cubic parameterization

Qðu; vÞ ¼ rðu; vÞMrTðu; vÞ
l0rTðu; vÞ

:

In this case the QSIC consists of Qðu; vÞ and a generating line of F ðXÞ ¼ 0 passing

through X0; the latter can be identified by the method in Section 4.4.
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When the QSIC is singular and irreducible, the type of its singular point can easily

be determined by the discriminant Dðu; vÞ of the quadratic equation Bðu; vÞ ¼ 0: it is
a crunode, a cusp, or an acnode if Dðu; uÞ > 0;¼ 0; or < 0, respectively. That is be-

cause if Bðu; vÞ ¼ 0, the line lr0 þ ku has at least second order contact with

Kðr; s; tÞ ¼ 0 at r0, where u ¼ ðu; v; 0Þ. Therefore the roots of Bðu; vÞ ¼ 0 give the di-

rections of the tangents lines of Kðr; s; tÞ ¼ 0 at r0.

4.2.2. Parameterization of a nonsingular QSIC

A nonsingular QSIC will be obtained as the image of a nonsingular plane cubic

curve under Pðr; s; tÞ. Such a QSIC cannot be parameterized as a rational curve,
but can be parameterized using elliptic functions [25] or with a square root [2]. A pa-

rameterization using a square root is computed in our method. Our technique is

based on a pencil of lines centered at a point on the cubic curve, but is different from

that in [2]; rather than choose the pencil center at infinity as in [2], we choose the cen-

ter at a special point to ensure that the common factor of the resulting parameteri-

zation of the QSIC can be eliminated.

In theory an irreducible plane cubic curve can be transformed into the standard

form (4), which will then lead to a simple parameterization of the curve with a square
root. One way of deriving the standard form is by first computing an inflection point

on the planar cubic curve; an inflection of a planar cubic can be found by solving an

equation of degree 9, which is the resultant of the cubic and its Hessian [5]. Identi-

fying inflection points on a curve is an important problem that has been studied in

CAGD (see, for example, [20]), but there seems to be no good solution to the prob-

lem of finding an inflection point on an irreducible planar cubic curve without solv-

ing a degree 9 equation. Another way of obtaining the standard form is by applying

a quadratic transformation to the cubic, as described in [25]. This quadratic transfor-
mation makes the processing of a parameterization of a planar cubic rather involved,

and it does not preserve the projective properties of the curve. Hence we employ in

the present paper an approach that needs the solution of only a quartic equation and

does not use the involved quadratic transformation. A more detailed comparison of

these three different methods for parameterizing a planar cubic curve, in terms of ef-

ficiency, accuracy, and simplicity of implementation, is beyond the scope of this pa-

per but would be an interesting topic for further research.

Let b0 and b1 be the two base points of Pðr; s; tÞ. By Theorem 3, b0 and b1 are two
of the three intersection points of Kðr; s; tÞ ¼ 0 with the base line Lðr; s; tÞ ¼ 0 of

Pðr; s; tÞ. Let r0 ¼ ðr0; s0; t0Þ be the intersection point of Kðr; s; tÞ ¼ 0 and

Lðr; s; tÞ ¼ 0 which is different from b0 or b1. Here we may assume that not all the

intersections of Kðr; s; tÞ ¼ 0 and Lðr; s; tÞ ¼ 0 are at the base points of Pðr; s; tÞ;
for otherwise, by Theorems 7 and 8 to be proved in Section 4.4, a generating line

of F ðXÞ ¼ 0 passing through X0 would be included in the QSIC, contradicting our

assumption that the QSIC is irreducible.

Again, we may assume that t0 6¼ 0 and u ¼ ðu; v; 0Þ, as in Section 4.2.1. So the pen-
cil of lines centered at r0 is wðu; l; kÞ ¼ lr0 þ ku. Similar to the argument in Section

4.2.1, substituting wðu; l; kÞ into Kðr; s; tÞ ¼ 0, noting that Kðr0Þ ¼ 0, and dropping

the factor k, we obtain
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l2 oK
or

u
	

þ oK
os

v


þ 1

2!
lk

X2

i¼0

2!

i!ð2
 iÞ!
o2K

o2
irois
u2
ivi

þ 1

3!
k2

X3

i¼0

3!

i!ð3
 iÞ!
o3K

o3
irois
u3
ivi ¼ 0;

or

Aðu; vÞl2 þ Bðu; vÞlk þ Cðu; vÞk2 ¼ 0; ð7Þ
where

Aðu; vÞ ¼ 6
oK
or

u
	

þ oK
os

v


; Bðu; vÞ ¼ 3

X2

i¼0

2!

i!ð2
 iÞ!
o2K

o2
irois
u2
ivi;

Cðu; vÞ ¼
X3

i¼0

3!

i!ð3
 iÞ!
o3K

o3
irois
u3
ivi:

Then

l ¼ 
Bðu; vÞ 	 ½B2ðu; vÞ 
 4Aðu; vÞCðu; vÞ�1=2; and k ¼ 2Aðu; vÞ:
So a parameterization of Kðr; s; tÞ ¼ 0 is

rðu; vÞ ¼ f
Bðu; vÞ 	 ½B2ðu; vÞ 
 4Aðu; vÞCðu; vÞ�1=2gr0 þ 2Aðu; vÞu ð8Þ
¼ sðu; vÞ 	 t0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðu; vÞ

p
; ð9Þ

where

sðu; vÞ ¼ 
Bðu; vÞr0 þ 2Aðu; vÞu; t0 ¼ r0;

Dðu; vÞ ¼ B2ðu; vÞ 
 4Aðu; vÞCðu; vÞ: ð10Þ

Mapping rðu; vÞ by Pðr; s; tÞ onto the quadric F ðXÞ ¼ 0 as in Section 4.2.1, we get the
(double valued) parameterization of the QSIC,

~QQðu; vÞ ¼ rðu; vÞMrTðu; vÞ ð11Þ
¼ sðu; vÞMsTðu; vÞ þ Dðu; vÞt0MtT0 	 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðu; vÞs

p
ðu; vÞMtT0 ð12Þ

¼ ~SSðu; vÞ 	 ~TTðu; vÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðu; vÞ

p
; ð13Þ

where

~SSðu; vÞ ¼ sðu; vÞMsTðu; vÞ þ Dðu; vÞt0MtT0 ; and ~TTðu; vÞ ¼ 2sðu; vÞMtT0 :

By Theorem 3, rðu; vÞ passes through the base points b0 and b1 of Pðr; s; tÞ. Suppose
rðui; viÞ ¼ bi; i ¼ 0; 1. Then it is easy to see that ~QQðui; viÞ ¼ PðbiÞ ¼ 0; therefore, as

we shall see shortly in Lemma 4, the components of ~QQðu; vÞ have a common factor.

This common factor can be removed by applying the following lemma.

Lemma 4. In Eq. (13), ~SSðu; vÞ and ~TTðu; vÞ have a common factor (v0u
 u0v), i.e.,
~SSðu0; v0Þ ¼ ~TTðu0; v0Þ ¼ 0, where ðu0; v0Þ is such that wððu0; v0; 0Þ; l; kÞ coincides with
the base line of Pðr; s; tÞ.
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Proof. Since r0 is on the base line Lðr; s; tÞ ¼ 0 of Pðr; s; tÞ, there is a unique member

wðu0; l; kÞ in the pencil that coincides with Lðr; s; tÞ ¼ 0. Let u0 ¼ ðu0; v0; 0Þ. Then
rðu0; v0Þ (double valued, given by (9)) are the base points of Pðr; s; tÞ, which are not

necessarily real points. Therefore ~QQðu0; v0Þ ¼ 0, or equivalently,

~SSðu0; v0Þ þ ~TTðu0; v0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðu0; v0Þ

p
¼ 0;

~SSðu0; v0Þ 
 ~TTðu0; v0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðu0; v0Þ

p
¼ 0:

It follows that ~SSðu0; v0Þ ¼ 0.
When Dðu0; v0Þ 6¼ 0, obviously we have ~TTðu0; v0Þ ¼ 0. When Dðu0; v0Þ ¼ 0, by (9),

rðu0; v0Þ ¼ sðu0; v0Þ is a double base point of Pðr; s; tÞ. Thus the base line of Pðr; s; tÞ is
tangent at sðu0; v0Þ to the four conics rMir

T ¼ 0, i ¼ 0; 1; 2; 3; formed by the four

components of Pðr; s; tÞ (see Section 2.2). Since t0 ¼ r0 is on the base line, it is on

the tangent line to each of the four conics at the double base point sðu0; v0Þ, i.e.,
sðu0; v0ÞMit

T
0 ¼ 0. Hence ~TTðu0; v0Þ ¼ 2sðu0; v0ÞMtT0 ¼ 0. �

By Lemma 4, after removing the common factor introduced by the base points, a
parameterization of the QSIC is given by

Qðu; vÞ ¼ Sðu; vÞ 	 Tðu; vÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðu; vÞ

p
s

�
~SSðu; vÞ

ðv0u
 u0vÞ
	

~TTðu; vÞ
ðv0u
 u0vÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðu; vÞ

p
: ð14Þ

Here Sðu; vÞ is of degree 3, Tðu; vÞ is of degree 1, and Dðu; vÞ is of degree 4.
Adopting the convention that the degree of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðu; vÞ

p
is half the degree of Dðu; vÞ,

the parameterizations constructed above for nonsingular irreducible QSICs have de-

gree 3. As a comparison, the degree of the parameterizations derived in [19,40] is also

3, unless a cone is used as the parameterization surface which results in a parameter-

ization of degree 4.

4.3. Connected components of a nonsingular QSIC

It is commonly accepted that a nonsingular QSIC has one or two topologically

connected components in PR3; however, a proof of this fact in the literature is not

known to us. Clearly, the number of connected components of a QSIC is important

for its structural classification. To the best of our knowledge, none of the existing
algorithms can identify these connected components. We will see that this issue is

easy to resolve by exploiting the relationship between QSICs and cubic plane

curves.

Theorem 5. A nonsingular QSIC has one or two connected components in PR3.

Proof. This theorem follows from the fact that the QSIC is a projection of a non-

singular plane cubic curve Kðr; s; tÞ ¼ 0, which has one or two connected compo-
nents in PR2 [29] (refer to Figs. 1(d)–(e)). �
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Theorem 6. ð1Þ A nonsingular QSIC has one component in PR3 if and only if Dðu; vÞ
(given by (10)) has two distinct real zeros. ð2Þ A nonsingular QSIC has two com-
ponents if and only if Dðu; vÞ > 0 for all ðu; vÞ 6¼ ð0; 0Þ or Dðu; vÞ has four distinct real
zeros.

Proof. Since this theorem is about a projective property, we may assume that the

cubic curve Kðr; s; tÞ ¼ 0 is in the standard form (4).

Because Dðu; vÞ is the discriminant of the quadratic equation (7) in l and k, a pair

ðu0; v0Þ is a zero of Dðu; vÞ if and only if Eq. (7) has a double root, i.e., if and only if

the corresponding line wððu0; v0; 0Þ; l; kÞ is tangent to the cubic curve Kðr; s; tÞ ¼ 0.
The two limit intersection points forming the tangency are in general different from

r0, the center of the pencil.

First suppose Kðr; s; tÞ ¼ 0 has one component in PR2 (see Fig. 1(e)). In this case,

according to [29], from a point on Kðr; s; tÞ ¼ 0 two tangents can be drawn to

Kðr; s; tÞ ¼ 0. So Dðu; vÞ has two real zeros. Furthermore, the two zeros are distinct;

for otherwise, if Dðu; vÞ has a double zero, there would be a line passing through r0
that has a triple intersection point with Kðr; s; tÞ ¼ 0 besides r0, resulting in four in-

tersection between the line and the cubic Kðr; s; tÞ ¼ 0, which contradicts B�eezout�s
theorem. When the triple intersection point coincides with r0, the same argument still

holds since the intersection multiplicity of the line and Kðr; s; tÞ ¼ 0 at r0 would be 4.

Hence, in this case Dðu; vÞ has two distinct zeros.

Now suppose Kðr; s; tÞ ¼ 0 has two components in PR2, consisting of an oval and

an infinite component (see Fig. 1(d)). When the pencil center r0 is on the oval, be-

cause the oval is strictly convex [29], any line passing through r0 intersects the oval

at one more point, and intersects the infinite component at the third point. Recalling

that Dðu; vÞ is the discriminant of (7), i.e., Dðu; vÞ > 0 if and only if the associated line
wððu; v; 0Þ; l; kÞ through r0 has two distinct real intersection points with Kðr; s; tÞ ¼ 0,

we conclude Dðu; vÞ > 0 for all ðu; vÞ 6¼ ð0; 0Þ.
When the pencil center r0 is on the infinite component, according to [29], from

r0 on Kðr; s; tÞ ¼ 0 four tangents can be drawn to Kðr; s; tÞ ¼ 0, two to the oval,

and the other two to the infinite component. So in this case there are four real

zeros of Dðu; vÞ. Using the same argument as in the case above where

Kðr; s; tÞ ¼ 0 has one component, it can be shown that the four tangents drawn

from r0 to Kðr; s; tÞ ¼ 0 are pairwise distinct. So the four real zeros of Dðu; vÞ
are distinct.

Note that a nonsingular QSIC has one (two) component(s) in PR3 if and only if

Kðr; s; tÞ ¼ 0 has one (two) component(s). Since, by Theorem 5, a nonsingular QSIC

can only have one or two components, the theorem is proved. �

Now consider how each component of the QSIC is parameterized over the inter-

vals of the real projective line PR1 divided by the zeros of Dðu; vÞ. When the QSIC

has one component, PR1 is divided into two intervals I 1 and I 2 by the two distinct
zeros of Dðu; vÞ. Suppose Dðu; vÞ is positive over I 1. Then the single component of

the QSIC is parameterized by (14) over I 1. The two ends of I 1 correspond to the

two tangents drawn from r0 to the only component of Kðr; s; tÞ ¼ 0.
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When Kðr; s; tÞ ¼ 0 has two components, either (1) Dðu; vÞ > 0 over the whole line

PR1; or (2) PR1 is divided into four intervals I 1, I 2, I 3, and I 4 by the four distinct
zeros of Dðu; vÞ. In case (1), r0 is on the oval (see the proof of Theorem 6) and any

line passing through r0 intersects Kðr; s; tÞ ¼ 0 at two other distinct points: one on the

oval and the other on the infinite component. Hence, when Dðu; vÞ has no real zeros,

the two components of Kðr; s; tÞ ¼ 0 (also the QSIC) are both parameterized by (14)

over PR1 but distinguished by the + and ) signs in front of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðu; vÞ

p
.

In case (2), r0 is on the infinite component. Without loss of generality, suppose

that Dðu; vÞ > 0 over I 1 and I 3, and that a particular parameter ðu0; v0Þ 2 I 1 gives

rise to a line wððu0; v0; 0Þ; l; kÞ through r0 that intersects the oval component of
Kðr; s; tÞ ¼ 0. Since the oval is strictly convex, it is intersected by this line at two

points, which must be distinguished by the + and ) signs in front of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðu; vÞ

p
. Hence

the oval is traced over the interval I 1, and the two branches given by the + and )
signs cover the same oval. The two ends of I 1 correspond to the two tangents drawn

from r0 to the oval. Hence, the component of the QSIC that corresponds to the oval

is covered by the + and ) branches of the parameterization (14) over I 1. Conse-

quently, the other component of the QSIC corresponding to the infinite component

of Kðr; s; tÞ ¼ 0 is parameterized by the + and ) branches of (14) over I 3. Hence,
when Dðu; vÞ has four real zeros, the two components of the QSIC are defined over

two different intervals of PR1.

The analysis and solution of a quartic equation play a key role in the above dis-

cussion. Given a quartic equation, the existence of its real roots can be detected

easily by Sturm�s sequences. Also, the roots of a quartic equation can be solved using

closed form formulas with radicals. See [11,37] for a detailed discussion of these

techniques.

4.4. Accounting for generating lines contained in the QSIC

Detecting whether a generating line is contained in a QSIC is certainly neces-

sary, but can prove difficult for some algorithms. For instance, this problem can-

not be solved by Levin�s method, as pointed out in [40]. In our algorithm, when

the QSIC contains a generating line of F ðXÞ ¼ 0 that passes through the COP X0,

special treatment is required, since in this case the entire generating line is

mapped by the inverse of Pðr; s; tÞ into a base point. So this linear component
of the QSIC cannot be obtained by mapping points on the quartic curve
�GGðr; s; tÞ ¼ 0 by Pðr; s; tÞ. Below we shall show how to detect this case by a sim-

ple analysis of the quartic curve �GGðr; s; tÞ ¼ 0. Note that a linear component of

the QSIC not passing through X0 can easily be detected by factoring

Kðr; s; tÞ ¼ 0.

Let F ðXÞ ¼ 0 and GðXÞ ¼ 0 be two distinct quadrics, and let Pðr; s; tÞ be a faithful

rational quadratic parameterization of F ðXÞ ¼ 0 with COP at X0. Let Lðr; s; tÞ ¼ 0 be

the base line of Pðr; s; tÞ.

Theorem 7. Suppose that F ðXÞ ¼ 0 is nondegenerate. Denote by ‘ the maximum in-
teger such that Lðr; s; tÞ is an ‘-fold factor of �GGðr; s; tÞ. Let G0 be a generating line of
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F ðXÞ ¼ 0 passing through X0, and let b0 be the base point of Pðr; s; tÞ corresponding to
G0. Let k denote the number of times that the curve Kðr; s; tÞ � �GGðr; s; tÞ=L‘ðr; s; tÞ ¼ 0
passes through b0. Then G0 is contained in the QSIC k þ ‘
 2 times, with 06 kþ
‘
 26 2.

Proof. By Theorem 2, ‘ is the multiplicity of the singularity of the QSIC at X0, and

16 ‘6 4 since the COP X0 is chosen to be on the QSIC. Let D denote the collection

of all the remaining components of the QSIC besides G0. First assume that G0 is not

tangent to D at X0. It is shown in [32] that k is equal to the number of those in-

tersections of G0 with the components in D that are not at X0, with 16 k6 3. Let m
be the multiplicity in the QSIC of the generating line G0. Let h be the multiplicity of

the singularity of D at X0. Then h is also the multiplicity of intersections of G0 with D
at X0. Since the multiplicity of the singularity of the QSIC at X0 is ‘ ¼ hþ m, it
follows that h ¼ ‘
 m. Hence the total number of intersections between G0 and D is

k þ h ¼ k þ ‘
 m.
When G0 is a tangent to D at X0, the number of intersections of G0 with D that are

not at X0 is k 
 1 and the number of intersections of G0 with D at X0 is hþ 1. Still,

the total number of intersections between G0 and D is ðk 
 1Þ þ ðhþ 1Þ ¼
k þ h ¼ k þ ‘
 m.

Next we show that k þ h ¼ 2. Let d be the degree of D which is defined to be the

sum of the degrees of all the components in D. Then d ¼ 4
 m. Let G1 be a gener-

ating line of F ðXÞ ¼ 0 that intersects G0 and is not contained in the quadric

GðXÞ ¼ 0. Let P denote the plane determined by G0 and G1. Then there are 4
 m in-

tersections between P and D, and these intersections are on either the line G0 or G1,

since G0 and G1 are the only intersection between P and F ðXÞ ¼ 0. Since the line G1 is

not contained in the QSIC, it is not contained in GðXÞ ¼ 0, so it has two intersections
with GðXÞ ¼ 0, or equivalently, two intersections with the QSIC. Since G1 intersects

G0 with multiplicity m, the number of intersections of G1 with D is 2
 m. So the num-

ber of intersections of G0 with D is ð4
 mÞ 
 ð2
 mÞ ¼ 2. Hence k þ ‘
 m ¼
k þ h ¼ 2, or m ¼ k þ ‘
 2.

Now we shall show that 06 k þ ‘
 26 2. Although k þ ‘
 2P 0 is obvious geo-

metrically from the fact that G0 is either contained ðk þ ‘
 2 > 0Þ or not contained
(k þ ‘
 2 ¼ 0) in the QSIC, an algebraic argument is still provided as follows. It is

already known that 16 ‘6 4. If ‘P 2, clearly k þ ‘
 2P 0, since kP 0. When ‘ ¼ 1,
by Theorem 2, the COP X0 is a regular point of the QSIC. So, by Theorem 3, k P 1.

Hence again we have k þ ‘
 2P 0.

Next we show by contradiction that k þ ‘
 26 2. Suppose k þ ‘
 2 > 2, i.e.,

G0 is contained in the QSIC at least three times. Then the QSIC consists of four

lines. It therefore follows [12] that there exists a quadric consisting of two

planes P1 and P2 in the pencil spanned by F ðXÞ ¼ 0 and GðXÞ ¼ 0, and that

P1 and P2 intersect F ðXÞ ¼ 0 along the same QSIC, i.e., the four lines. How-

ever, each of P1 and P2 can only intersect the nondegenerate quadric
F ðXÞ ¼ 0 along two intersecting and distinct generating lines. This contradicts

the fact that G0 is contained in the QSIC at least three times. Hence k þ ‘

26 2. �
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Theorem 8. Suppose that F ðXÞ ¼ 0 is properly degenerate. Denote by ‘ the maximum
integer such that Lðr; s; tÞ is an ‘-fold factor of �GGðr; s; tÞ. Let G0 be the unique generating
line of F ðXÞ ¼ 0 that passes through X0. Let b0 be the double base point of Pðr; s; tÞ,
and let k denote the number of times that the curve Kðr; s; tÞ � �GGðr; s; tÞ=L‘ðr; s; tÞ ¼ 0

passes through b0. Then G0 is contained in the QSIC 2‘þ k 
 4 times, with
0 < 2‘þ k 
 46 4.

Proof. The degree of Kðr; s; tÞ ¼ 0 is 4
 ‘. By Theorem 1, Kðr; s; tÞ ¼ 0 is mapped by

Pðr; s; tÞ into a component, or a collection of components, of the QSIC of total

degree d ¼ 2� ð4
 ‘Þ 
 k ¼ 8
 2‘
 k. Because the QSIC is a quartic curve, G0

must be included in the QSIC 4
 d ¼ 2‘þ k 
 4 times in order to account for the

missing components of the QSIC.

It is again obvious geometrically that 2‘þ k 
 4P 0, and an algebraic argument

similar to the proof of Theorem 7 can be given but is omitted. Because

k6 4
 ‘; 2‘þ k 
 46 ‘6 4. �

It is possible for a generating line G0 of a properly degenerate quadric F ðXÞ ¼ 0 (a

cone or a cylinder) to be contained in the QSIC four times, as exemplified by the in-
tersection of a cylinder F ðXÞ ¼ 0 with a double plane tangent to F ðXÞ ¼ 0 along G0.

So the upper bound 4 is attainable.

5. Examples

In this section we shall use some examples to demonstrate the major steps of our

algorithm in a variety of cases.

Fig. 2. Singular intersection of a sphere and a cylinder.
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5.1. Example 1

Consider the sphere S1 : F ðXÞ � x2 þ y2 þ z2 
 w2 ¼ 0 and the cylinder S2 :
GðXÞ � x2 þ ðy 
 0:5wÞ2 
 0:25w2 ¼ 0 illustrated in Fig. 2. Rewriting these equa-

tions in matrix form, we have

F ðXÞ ¼ XAXT; GðXÞ ¼ XBXT;

where

A ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 
1

2
666664

3
777775
; B ¼

1 0 0 0

0 1 0 
0:5

0 0 0 0

0 
0:5 0 0

2
666664

3
777775
:

A rational quadratic parameterization of S1 with COP at X0 ¼ ð0; 0; 1; 1Þ is given

by

Pðr; s; tÞ ¼ r2
0

0

1

1

0
BB@

1
CCAþ rs

0

0

0

0

0
BB@

1
CCAþ rt


1

0

0

0

0
BB@

1
CCAþ rs

0

0

0

0

0
BB@

1
CCAþ s2

0

0

1

1

0
BB@

1
CCAþ st

0


1

0

0

0
BB@

1
CCA

þ rt


1

0

0

0

0
BB@

1
CCAþ st

0


1

0

0

0
BB@

1
CCAþ t2

0

0


1

1

0
BB@

1
CCA:

The quartic curve �GGðr; s; tÞ � GðPðr; s; tÞÞ ¼ 0 is

�GGðr; s; tÞ ¼ 2r2st þ 4r2t2 þ 2s3t þ 4r2t2 þ 2st3 ¼ 0:

Removing the base line factor X0Aðr; s; t; 0ÞT ¼ t from �GGðr; s; tÞ ¼ 0, we obtain the

cubic curve

Kðr; s; tÞ ¼ 2r2sþ 4r2t þ 2s3 þ 4r2t þ 2st2 ¼ 0;

which is irreducible and has a singular point at r0 ¼ ð0;
1; 1Þ. Using the pencil of

lines

Pðð0; u; vÞ; l; kÞ ¼ lr0 þ kð0; u; vÞ;

centered at r0, we obtain a parametrization of Kðr; s; tÞ ¼ 0,

rðu; vÞ ¼ Cðu; vÞr0 
 Bðu; vÞðu; v; 0Þ

¼ u3

1
0

0

0
@

1
Aþ u2v

0

2

1

0
@

1
Aþ uv2

1
0

0

0
@

1
Aþ v3

0
0

1

0
@

1
A;
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where Bðu; vÞ ¼ u2 
 v2 and Cðu; vÞ ¼ u2vþ v3. Mapping rðu; vÞ onto the sphere S1

yields a degree 6 rational parameterization of the singular QSIC,

Pðrðu; vÞÞ ¼ rðu; vÞMrTðu; vÞ

¼ u6

0

0

1

1

0
BBB@

1
CCCAþ u5v

2

0

0

0

0
BBB@

1
CCCAþ u4v2

0

4

1

3

0
BBB@

1
CCCAþ u3v3

0

0

0

0

0
BBB@

1
CCCA

þ u2v4

0

4


1

3

0
BBB@

1
CCCAþ uv5


2

0

0

0

0
BBB@

1
CCCAþ v6

0

0


1

1

0
BBB@

1
CCCA: ð15Þ

By Theorem 3, rðu; vÞ passes once through each of the two base points (1;	i; 0) of
Pðr; s; tÞ. The two parameter values of rðu; vÞ that correspond to the base points are

determined by two of the roots of the cubic equation 10r
Tðr; s; tÞ ¼ 0, where 10X

T ¼ 0

is the base line equation. Since 10 ¼ ð0; 0; 1Þ, 10rTðu; vÞ ¼ u2vþ v3 ¼ vðu2 þ v2Þ. The
factor u2 þ v2 has complex conjugate roots, so these two roots must give the two base

points through rðu; vÞ. By removing the factor u2 þ v2 from Pðrðu; vÞÞ (15), we obtain
a faithful quartic rational parameterization of the QSIC,

�qqðu; vÞ ¼ rðu; vÞ
u2 þ v2

¼ u4

0

0

1

1

0
BBB@

1
CCCAþ u3v

2

0

0

0

0
BBB@

1
CCCAþ u2v2

0

4

0

2

0
BBB@

1
CCCAþ uv3


2

0

0

0

0
BBB@

1
CCCAþ v4

0

0


1

1

0
BBB@

1
CCCA:

The singular point on the QSIC is at Pðr0Þ ¼ ð1; 0; 1; 1Þ, which is a crunode since the

discriminant of Bðu; vÞ is positive.

5.2. Example 2

Consider the sphere S1 : F ðXÞ ¼ x2 þ y2 þ z2 
 w2 ¼ 0 and the cylinder

S2 : GðXÞ ¼ ðx
 0:65wÞ2 þ y2 
 0:4225w2 ¼ 0 illustrated in Fig. 3. Rewriting these

equations in matrix form, we have

F ðXÞ ¼ XAXT; GðXÞ ¼ XBXT;

where

A ¼

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 
1

2
6664

3
7775; B ¼

1 0 0 
0:65

0 1 0 0

0 0 0 0


0:65 0 0 0

2
6664

3
7775:
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A rational quadratic parameterization of S1 with COP at X0 ¼ ð0; 0; 1; 1Þ is given

by Pðr; s; tÞ, the same as in Example 1. The quartic curve �GGðr; s; tÞ � GðPðr; s; tÞÞ ¼ 0

is

�GGðr; s; tÞ ¼ 2:6r2st þ 4:0r2t2 þ 2:6s3t þ 4:0s2t2 þ 2:6st3 ¼ 0:

Removing the base line factor X0Aðr; s; t; 0ÞT ¼ t from �GGðr; s; tÞ ¼ 0, we obtain the

cubic curve

Kðr; s; tÞ ¼ 2:6r2sþ 4:0r2t þ 2:6s3 þ 4s2t þ 2:6st2 ¼ 0;

which is nonsingular. Its parameterization is

rðu; vÞ ¼ sðu; vÞ 	 t0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðu; vÞ

p
;

where t0 ¼ ð1; 0; 0ÞT,

sðu; vÞ ¼ u2
0

0

8

0
@

1
Aþ uv

0

8

5:2

0
@

1
Aþ v2

0

5:2

0

0
@

1
A;

and

Dðu; vÞ ¼ 
41:6u3v
 91:04u2v2 
 83:2uv3 
 27:04v4:

Mapping rðu; vÞ onto the sphere S1 and eliminating the unfaithfulness introduced by

the base points, yields an exact parameterization of the nonsingular QSIC

Qðu; vÞ ¼ Sðu; vÞ 	 Tðu; vÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðu; vÞ

p
;

Fig. 3. Nonsingular intersection of a sphere and a cylinder.
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where Dðu; vÞ is the same as above, and

Sðu; vÞ ¼ u3

0:0

0:0


64:0

64:0

0
BB@

1
CCAþ u2v

0:0


128:0


124:8

41:6

0
BB@

1
CCAþ uv2

0:0


166:4


54:08

0:0

0
BB@

1
CCAþ v3

0:0


54:08

0:0

0:0

0
BB@

1
CCA;

Tðu; vÞ ¼ u


16:0

0:0

0:0

0:0

0
BB@

1
CCAþ v


10:4

0:0

0:0

0:0

0
BB@

1
CCA:

Since Dðu; vÞ has two real zeroes ðu1; v1Þ ¼ ð1:0; 0:0Þ and ðu2; v2Þ ¼ ð
0:65; 1:0Þ, by
Theorem 6 the QSIC has one component.

5.3. Example 3

Consider the two quadric cones S1 and S2 given by

F ðXÞ ¼ XAXT; GðXÞ ¼ XBXT;

where

A ¼

1:0 0:0 0:0 
0:50

0:0 0:75 
0:5 
0:5

0:0 
0:5 0:0 0:0


0:5 
0:5 0:0 0:25

2
66664

3
77775; B ¼

0:75 0:0 
0:5 0:125

0:0 1:0 0:0 0:0


0:5 0:0 0:0 0:25

0:125 0:0 0:25 
0:3125

2
66664

3
77775:

Fig. 4. Singular intersection of two cones.
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This example is illustrated in Fig. 4. The vertex of S1 is on S2 and the vertex of S2 is

on S1. A rational quadratic parameterization of S1 with COP at X0 ¼ ð0:5; 0:0;
0:0; 1:0Þ is given by

Pðr; s; tÞ ¼ r2
0:5
0:0
0:0
1:0

0
BB@

1
CCAþ rs

0:5
0:0
0:0
0:0

0
BB@

1
CCAþ rt

0:0
0:0
0:0
0:0

0
BB@

1
CCAþ rs

0:5
0:0
0:0
0:0

0
BB@

1
CCAþ s2

0:375
1:0
0:0
0:75

0
BB@

1
CCA

þ st


0:25
0:0
0:5

0:5

0
BB@

1
CCAþ rt

0:0
0:0
0:0
0:0

0
BB@

1
CCAþ st


0:25
0:0
0:5

0:5

0
BB@

1
CCAþ t2

0:0
0:0
0:0
0:0

0
BB@

1
CCA:

The quartic curve corresponding to the QSIC is

�GGðr; s; tÞ ¼ r3sþ 0:75r2s2 þ 0:75rs3 
 2rs2t þ s4 ¼ 0:

Pðr; s; tÞ has the double base point ð0; 0; 1Þ. The base line is

Lðr; s; tÞ ¼ l0ðr; s; tÞT ¼ X0Aðr; s; t; 0ÞT ¼ 
0:5s ¼ 0:

Dividing �GGðr; s; tÞ by Lðr; s; tÞ yields the cubic curve

Kðr; s; tÞ ¼ 
2:0r3 
 1:5r2s
 1:5rs2 þ 4:0rst 
 2:0s3 ¼ 0;

which is singular, with the singular point at ðr0; s0; t0Þ ¼ ð0; 0; 1Þ. A rational cubic

parameterization of Kðr; s; tÞ is found to be

rðu; vÞ ¼ Cðu; vÞr0 
 Bðu; vÞðu; v; 0Þ ¼ u3
0:0

0:0


2:0

0
B@

1
CAþ u2v


4:0

0:0


1:5

0
B@

1
CA

þ uv2
0:0


4:0


1:5

0
B@

1
CAþ v3

0:0

0:0


2:0

0
B@

1
CA

Mapping rðu; vÞ onto S1 by Pðr; s; tÞ yields a parameterization of the QSIC,

Pðrðu; vÞÞ ¼ rðu; vÞMrTðu; vÞ

¼ u6

0:0

0:0

0:0

0:0

0
BBB@

1
CCCAþ u5v

0:0

0:0

0:0

0:0

0
BBB@

1
CCCAþ u4v2

4:0

0:0

8:0

8:0

0
BBB@

1
CCCAþ u3v3

13:0

0:0

6:0


6:0

0
BBB@

1
CCCA

þ u2v4

3:0

16:0

6:0

6:0

0
BBB@

1
CCCAþ uv5


4:0

0:0

8:0


8:0

0
BBB@

1
CCCAþ v6

0:0

0:0

0:0

0:0

0
BBB@

1
CCCA:
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To remove unfaithfulness, we observe that the cubic rðu; vÞ passes through the

double base point ð0; 0; 1Þ three times. The three intersections of rðu; vÞ with the base
line lT0 ðr; s; tÞ ¼ 0 correspond to the three roots of l0r

Tðu; vÞ ¼ 0. So, removing the

cubic factor l0r
Tðu; vÞ ¼ 2uv2 from Pðrðu; vÞÞ, we obtain a rational parameterization

of the cubic component of the QSIC,

Qðu; vÞ ¼ u3

2:0

0:0

4:0

4:0

0
BBB@

1
CCCAþ u2v

6:5

0:0

3:0


3:0

0
BBB@

1
CCCAþ uv2

1:5

8:0

3:0

3:0

0
BBB@

1
CCCAþ v3


2:0

0:0

4:0


4:0

0
BBB@

1
CCCA:

Since Lðr; s; tÞ ¼ l0ðr; s; tÞT is a single factor of �GGðr; s; tÞ and Kðr; s; tÞ �
�GGðr; s; tÞ=Lðr; s; tÞ ¼ 0 passes through the base point ð0; 0; 1Þ three times, it follows by

Theorem 8, with ‘ ¼ 1 and k ¼ 3, that the unique generating line of S1 passing

through X0 is contained once in the QSIC, since 2‘þ k 
 4 ¼ 1. This line is pa-

rameterized by

fQ1ðu; vÞ ¼ u

0:5

0:0

0:0

1:0

0
BBB@

1
CCCAþ v

0:0

0:0

0:5

0:0

0
BBB@

1
CCCA:

Thus the QSIC consists of a cubic curve and a line. Note that, since the singular

point of Kðr; s; tÞ ¼ 0 is at the base point of Pðr; s; tÞ, it is not mapped to any point on

the QSIC.

5.4. Example 4

Consider the elliptical cylinder S1 : F ðXÞ ¼ 4x2 þ z2 
 w2 ¼ 0 and the hyperboloid

of one sheet S2 : GðXÞ ¼ x2 þ 4y2 
 z2 
 w2 ¼ 0 illustrated in Fig. 5. Only four digits

after the decimal point are kept in the following presentation. The COP used for pa-

rameterizing S1 is X0 ¼ ð0;
ffiffiffiffiffiffiffiffi
1=2

p
; 1; 1Þ. The QSIC is found to be nonsingular. After

removing unfaithfulness, the parameterization of the QSIC is

Qðu; vÞ ¼ Sðu; vÞ 	 Tðu; vÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðu; vÞ

p
;

where

Sðu; vÞ ¼ u3

0:0

1131:3708


1600:0

1600:0

0
BBB@

1
CCCAþ u2v

0:0


5760:0

10861:1602

3620:2867

0
BBB@

1
CCCAþ uv2

0:0

10861:1602


21504:0

5120:0

0
BBB@

1
CCCA

þ v3

0:0


8192:0

11585:2375

11585:2375

0
BBB@

1
CCCA;
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Tðu; vÞ ¼ u


80:0

0:0

0:0

0:0

0
BBB@

1
CCCAþ v

1181:0193

0:0

0:0

0:0

0
BBB@

1
CCCA

and

Dðu; vÞ ¼ 905:0967u3v
 3328:0u2v2 þ 2896:3094uv3:

Since Dðu; vÞ has four real zeroes, by Theorem 6 the QSIC has two connected

components.The computation error in Qðu; vÞ is of order Oð10
7Þ with double pre-
cision. The error is measured as the maximum distance from a sequence of densely

sampled points on Qðu; vÞ to the two original quadrics.

5.5. Example 5

Consider the ellipsoid

S1 : F ðXÞ � 0:95x2 þ 1:1 y2 þ 1:05z2 
 w2 ¼ 0

and the sphere

S2 : GðXÞ � x2 þ y2 þ z2 
 w2 ¼ 0

illustrated in Fig. 6. The COP for parameterizing S1 is at X0 ¼ ð
ffiffiffiffiffiffiffiffi
1=2

p
; 0;

ffiffiffiffiffiffiffiffi
1=2

p
; 1Þ.

After removing unfaithfulness, a parameterization of the QSIC is

Qðu; vÞ ¼ Sðu; vÞ 	 Tðu; vÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dðu; vÞ

p
; ð16Þ

Fig. 5. Nonsingular intersection of an elliptical cylinder and a hyperboloid of one sheet.
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where

Sðu; vÞ ¼ u3


0:72

0:0

0:72

1:0182

0
BBB@

1
CCCAþ u2v


0:72

0:0


1:2

0:3394

0
BBB@

1
CCCAþ uv2

0:08

0:0


0:72

0:3394

0
BBB@

1
CCCAþ v3

0:08

0:0


0:08

0:1131

0
BBB@

1
CCCA;

Tðu; vÞ ¼ u

0:0

1:6972

0:0

0:0

0
BBBB@

1
CCCCAþ v

0:0

0:5656

0:0

0:0

0
BBBB@

1
CCCCA;

Dðu; vÞ ¼ 0:48u3v
 0:32u2v2 
 0:16uv3:

Since Dðu; vÞ has four real zeroes ðu1; v1Þ ¼ ð1:0; 0:0Þ, ðu2; v2Þ ¼ ð1:0; 1:0Þ, ðu3; v3Þ ¼
ð
0:3333; 1:0Þ, ðu4; v4Þ ¼ ð0:0; 1:0Þ, it follows by Theorem 6 that the QSIC has two
connected components.

Using double precision, the computation error in this parameterization is less

than 10
14, and the QSIC is correctly classified as nonsingular. Again, the error is

measured as the maximum distance from a sequence of densely sampled points on

the parametric curve (16) to the two input quadrics. It is interesting to note that

when the Segre characteristic is applied to this input, the discriminant of the charac-

teristic equation of the two quadrics evaluates to less than 10
13. We speculate that in

this case an erroneous classification of the QSIC is very likely to result if the discri-
minant is evaluated with floating-point arithmetic.

Fig. 6. Singular intersection of a sphere (red) and an ellipsoid (green).
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6. Concluding remarks

We have presented an algebraic method to classify and parameterize the intersec-

tion curve of two quadric surfaces (QSIC). This method is different from those based

on Levin�s approach [19,31,40], and is an extension of the method in [12]. Based on a

birational mapping between the QSIC and a plane cubic curve, we have developed an

algorithm to classify a general QSIC and compute parameterizations of all its irre-

ducible or connected components. One requirement of the method is that a real point

on the QSIC be found first and used as the COP for a rational quadratic parameter-

ization of one of the input quadrics. In our implementation this point is computed by
Levin�s method.

Singular points on boundary curves furnish important topological information in

solid modeling systems [17]. By exploiting the relation between QSICs and plane cubic

curves, the singular point on a singular irreducible QSIC can easily be classified as cor-

responding to the crunodal, acnodal, or cuspidal double point on a singular plane cubic

curve.Moreover, based on the analysis of plane cubic curves, our method is capable of

identifying the connected components of a nonsingularQSIC inPR3, corresponding to

either a unipartite or bipartite nonsingular plane cubic curve [29]. These connected
components cannot be identified by other established methods for computing QSICs.

To summarize, compared with other existing algorithms, the main advantages of

our method are that (1) it accepts arbitrary quadric surfaces as input (all methods

based on geometric approaches deal with natural quadrics only); (2) it computes a

general intersection curve between any two quadrics, degenerate as well as nonde-

generate (the method in [12], for example, detects and processes degenerate intersec-

tion curves only); (3) it produces a complete topological classification of the

intersection curve of two quadric surfaces in terms of singularity type and the num-
ber of connected components, a classification not achieved in any of the other exist-

ing methods; the method in [40] can detect the degeneracy of a QSIC and determine

the type of its singularity, but cannot determine the number of connected compo-

nents of a nondegenerate QSIC.

The birational mapping between the QSIC and a plane cubic curve is well known

in the literature of algebraic geometry. Our contribution is exploiting this result to

devise a new algorithm to compute the intersection curve between two general quad-

ric surfaces. In this endeavor we have had to solve a number of computational prob-
lems and to provide a thorough analysis of all nondegenerate and degenerate cases

encountered in practice. As a result, we have obtained an algorithm capable of ac-

cepting general quadrics, producing a complete topological classification of the

QSIC, and computing a low-degree parameterization of a general QSIC. In these as-

pects our algorithm is superior to other existing methods of computing the QSIC.

It is still an open problem of theoretical interest to determine whether or not every

plane cubic curve can be generated from the projection of a QSIC through a point on

the QSIC. So far it has been observed only that all major species of cubic plane
curves occur as the projections of QSICs in our algorithm. Therefore our efforts

to process a general plane cubic curve are justified. To put this problem in perspec-

tive, recall that only special plane quartic curves can occur as the projections of

W. Wang et al. / Graphical Models 64 (2003) 335–367 365



QSICs through an arbitrary point in space; for a nonsingular QSIC such a quartic

has, in general, two double points. So another open problem is how to exploit the
properties of such a special quartic curve to facilitate the computation of a QSIC.
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